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Abstract

Current methods used for stochastic projection of the finances of the
combined Old-Age and Survivors Insurance and Disability Insurance
(OASDI) trust fund are described and found to have problems. Struc-
tural time series models and alternative Monte Carlo procedures are
identified as new methods that may be able to solve these problems.
The new methods are implemented using the productivity growth rate
and total fertility rate as examples. Experience from the two examples
provides some preliminary indications about how a switch to the new
methods affects implementation effort and substantive results concern-
ing the degree of uncertainty in trust fund finances.
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Over the past decade, stochastic projection of the financial condition of the
combined OASDI trust fund has evolved from a suggestion by advisory pan-
els to actual practice in government agencies. After describing the evolution
of the stochastic projection methods currently in use, two problems with
current methods are identified. Both problems are related to the represen-
tation of the long-run projected mean, or ultimate value, of key economic
and demographic input variables. Current methods ignore the fact many in-
put variables exhibit time-varying mean displacement and the fact that the
long-run projection mean is rarely known with certainty. Statistical and sim-
ulation methods are proposed to solve these problems. These new methods
are applied to two key input variables: the productivity growth rate and the
total fertility rate. The distribution of the input variable and distribution of
the trust fund actuarial balance (that is, actuarial surplus) that are generated
by these new methods are compared to the distributions generated by current
methods. The two examples are then combined permitting a comparison of
the simulated distribution of the trust fund actuarial balance using current
and new methods for both input variables. After summarizing the results of
this exercise, suggestions are made for future work in this area.

Evolution of Current Methods

For many decades the Social Security Administration’s Office of the Chief Ac-
tuary (OACT) has used non-stochastic methods to project trust fund finances
in the annual Trustees Report.1 Intermediate-cost time series projections for
each of about a dozen key demographic and economic variables are used as
input to a structural model of trust fund finances that produces a 75-year
trust fund actuarial balance, the most common measure of trust fund sol-
vency. Typically, each input variable is assumed to move gradually from its
starting value to an ultimate value over the first few years of the projection,
and is then assumed to remain at that ultimate value during all subsequent
years of the projection. The intermediate-cost assumptions are characterized
as the most likely projection. In addition to this intermediate-cost projec-
tion, two alternative projections are specified: a low-cost projection, in which
each one of the key input variables is assumed to have an alternative ulti-
mate value that increases the trust fund actuarial balance, and a high-cost

1See, for example, The 2002 Annual Report of the Board of Trustees of the Federal
Old-Age and Survivors Insurance and Disability Insurance Trust Funds.
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projection, in which each one of the key input variables is assumed to have
an alternative ultimate value that decreases the trust fund actuarial balance
(or surplus).

The 1991 Advisory Council report criticized these non-stochastic projec-
tion methods and recommended the use of methods that would permit the
quantification of uncertainty in projections of input variables and trust fund
finances.2 The Advisory Council’s critique of OACT’s methods focused on
the ad hoc nature of the time series assumed for the key input variables.
The assumed time series have no cyclical fluctuations from year to year, and
therefore, are often unrealistic. More problematic is the fact that the input
variable time series used in the low-cost and high-cost projections are cor-
related in ways that are contrary to theoretical expectations and historical
experience: either all the variables move simultaneously in ways that de-
crease the trust fund actuarial balance in the high-cost projection or all the
variables move simultaneously in ways that increase the actuarial balance in
the low-cost projection. And in addition, the low-cost and high-cost projec-
tions have no probabilistic foundations, leaving the probability of occurrence
of the low-cost and high-cost projections unknown.

In order to implement the Advisory Council’s recommendation, two new
capabilities are needed: the capability of generating with Monte Carlo meth-
ods a large sample of realistic time series for each of the key demographic
and economic input variables, and a structural model of trust fund finances
that is integrated in the form of a single computer program that can process
quickly thousands of projections.

OACT responded to this recommendation by experimenting with meth-
ods for generating more realistic time series for the input variables. Using
quarterly time series data for a number of economic input variables, Foster
estimated autoregressive integrated moving average (ARIMA) models3 that
would be suitable for use in the Trustees Report’s short-run projections of the
OASDI trust fund.4 Following Foster’s appointment as Chief Actuary at the
Centers for Medicare & Medicaid Services, this line of research produced pre-
liminary stochastic projections of Supplementary Medical Insurance (SMI)

2Report of the 1991 Advisory Council on Social Security, 1991.
3George P. Box and Gwilym M. Jenkins, Times Series Analysis: Forecasting and Con-

trol, New York, NY: Holden-Day, 1976.
4Richard S. Foster, “A Stochastic Evaluation of the Short-Range Economic Assump-

tions in the 1994 OASDI Trustees Report,” Social Security Administration Actuarial Study
No. 109, Baltimore, MD: SSA Office of the Actuary, August 1994.
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costs in the Medicare Trustees Report.5

The 1994–96 Advisory Council report also recommended that “stochastic
simulation modeling should be used as a tool for recognizing explicitly the
uncertainty surrounding the Trustees’ demographic and economic assump-
tions.”6 As part of its activities the Advisory Council supported the develop-
ment of an integrated structural model of long-run trust fund finances, which
has subsequently been used by various private organizations and government
agencies interested in OASDI policy.7 In addition to sponsoring the initial
development of SSASIM, the Advisory Council supported the estimation of
a vector autoregressive (VAR) model of three economic input variables using
annual time series data on the unemployment rate, inflation rate, and nomi-
nal interest rate. A simple stochastic process representing annual returns on
corporate equities was also estimated using historical data stretching back
to the late 1920s. The estimated VAR model and equity return process were
used in SSASIM to generate stochastic projections of the trust fund actuarial
balance under alternative trust fund investment policies, including options
for investing in corporate equities.8

The 1999 Social Security Advisory Board technical panel reiterated the
recommendations of the earlier Advisory Councils. Stating that they “follow
previous panels in strongly recommending efforts toward stochastic modeling
or similar techniques that are better able to capture the interrelationships
among assumptions,” they emphasized that “what we seek is a method of
displaying to policymakers and the public just how uncertain is some average
cost outcome or date of exhaustion of the Trust Funds, and what are the
probabilities that events will be close to or far away from that result.”9

Incorporating ARIMA models of the mortality rate and the fertility rate
that are estimated using annual data stretching back to the beginning of the

5The 2002 Annual Report of the Board of Trustees of the Federal Hospital Insurance and
Federal Supplementary Medical Insurance Trust Funds, Appendix IV.D: Supplementary
Assessment of Uncertainty in SMI Cost Projections.

6Report of the 1994–1996 Advisory Council on Social Security, Volume I, page 22.
7Martin Holmer, Introductory Guide to SSASIM Washington, DC: Policy Simulation

Group, January 2003. SSASIM is available at 〈http://www.polsim.com/〉.
8Martin Holmer and Christopher Bender, “Stochastic Simulation of Trust Fund Asset-

Allocation,” Report of the 1994–1995 Advisory Council on Social Security, Volume II,
pages 431–450.

9Quoted on page 130 of The 2002 Annual Report of the Board of Trustees of the Federal
Hospital Insurance and Federal Supplementary Medical Insurance Trust Funds.
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twentieth century,10 an integrated reduced-form model of trust fund finances,
called the Stochastic Social Security Simulator, or S4, has been developed at
Mountain View Research.11

During the past few years, the Congressional Budget Office (CBO) has de-
veloped an integrated structural model of OASDI trust fund finances, called
CBOLT, and has used annual time series data to estimate ARIMA models
for nine key input variables.12 Three of the economic input variables are
represented as a VAR model, while the mortality and fertility processes are
similar to those in S4.

And finally, OACT initiated in 2002 a comprehensive effort to develop
its own stochastic projection capabilities. This effort will require not only
the estimation of stochastic processes for each of the key input variables, but
also the construction of an integrated model of trust fund finances out of
the component sub-models that have been used for decades to produce the
low-cost, intermediate-cost, and high-cost projections. It is anticipated that
the first report on this effort will appear in the 2003 Trustees Report.

Problems with Current Methods

The methods that have evolved for stochastic projection of trust fund fi-
nances are basically sound. The use of historical data to estimate stochastic
processes for each of the key demographic and economic input variables is
a sensible way to determine the range of variation in each variable and the
degree of correlation between variables. The use of Monte Carlo simulation
methods to realize a time series for each of the input variables, and the use
of an integrated structural model of trust fund finances to translate these
input time series into a trust fund actuarial balance (or other summary mea-
sure), are straightforward applications of methods that are commonly used in
other areas of science and business. The resulting probability distribution of

10Ronald D. Lee and Lawrence Carter, “Modeling and Forecasting the Time Series of
U.S. Mortality,” Journal of the American Statistical Association 87:659–671, 1992. Ronald
D. Lee, “Modeling and Forecasting the Time Series of U.S. Fertility: Age Patterns, Range,
and Ultimate Level,” International Journal of Forecasting 9:187–202, 1993.

11Ronald Lee and Shripad Tuljapurkar, “Uncertain Demographic Futures and Social
Security Finances,” American Economic Review 88:237–241, 1998. S4 is available at
〈http://simsoc.demog.berkeley.edu/〉.

12Congressional Budget Office, “Uncertainty in Social Security’s Long-Term Finances:
A Stochastic Analysis,” A CBO Paper, December 2001.
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the trust fund actuarial balance (or other measure) summarizes expectations
about its range of variation in the future.

There is little difference of opinion about what is involved in building
an integrated structural model of trust fund finances that is adequate for
stochastic projection. Both CBOLT and SSASIM exhibit about the same
sensitivity to changes in input variables as does the model used by OACT
to produce results in the Trustees Report. What is challenging, on the other
hand, is the estimation of stochastic processes for the key input variables.
Alternative specifications of the input variable stochastic process can lead
to substantially different probability distributions of the trust fund actuarial
balance (or other measure).

One problem with current methods is that neither ARIMA nor VAR mod-
els can explicitly represent a stochastic processes with a time-varying mean
displacement. This is a potentially severe problem because a number of the
key input variables are viewed by economists and demographers as exhibit-
ing means that have differed across prior decades. For example, economists
have produced a massive literature documenting the fact that the produc-
tivity growth rate has been either above or below the long-run mean for
decades at a time. Any stochastic process that ignores this time-varying
mean-displacement behavior of the productivity growth rate will understate
the degree of uncertainty in simulated probability distributions of the trust
fund actuarial balance (or other measure).

A second problem with current methods is that an input variable’s long-
run mean (or ultimate value) used in the stochastic projection is assumed
to be certain. Historical experience is not always the most reliable guide
for projecting the future, and therefore, it is often appropriate to assume
that an input variable’s projection mean is either higher or lower than its
historical mean. In other words, the assumed long-run projection mean can
be viewed as the sum of the long-run historical mean and a projection de-
viation from the long-run historical mean. Such adjustments to the long
run historical mean are completely appropriate when there are reasons to
believe that the future will be different than the past. But considering the
long-run projection mean to be known with certainty is a potentially severe
problem because this approach ignores not only uncertainty in measuring
the long-run historical mean (measurement error), but also uncertainty in
the projection deviation (prediction error). Any stochastic projection that
ignores these two sources of uncertainty in the long-run projection mean as-
sumed for each input variable will understate the degree of uncertainty in
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simulated probability distributions of the trust fund actuarial balance (or
other measure).

Overview of New Methods

The first problem — that current methods ignore time-varying mean dis-
placement in the input variables — can be addressed by using structural
time series models.13 These structural models have been developed as an
alternative to ARIMA models, have the capability of explicitly represent-
ing time-varying mean displacements, and are easily estimated by applying
maximum likelihood methods to the Kalman filter using available statistical
software.14 They can also be used in a multivariate setting as an alternative
to VAR models. The exact specification of the structural time series model
is likely to differ for each input variable. If an input variable has already
been first-differenced (like the productivity growth rate), the specification of
its model is likely be less complex than the specification of a model for an
input variable that has not been first-differenced (like the total fertility rate).
The exact specification of the structural time series models used in the two
examples are shown below, both in their equation form and state space form.

The second problem — that current methods ignore uncertainty in the
assumed long-run projection means — can be addressed by using standard
Monte Carlo simulation methods.15 Rather than assume a certain long-
run projection mean, estimates of an input variable’s measurement error
(measuring the uncertainty in the variable’s historical mean) and prediction
error (measuring the uncertainty in the variable’s projection deviation) can
be used to construct a distribution for the long-run projection mean. This
normal distribution has a mean equal to the assumed ultimate value and has
a variance equal to the sum of the variance of the measurement error and
the variance of the prediction error (assuming no correlation between the
measurement and prediction errors). Before the estimated stochastic process
for an input variable is used to realize a time series, the distribution of the

13Andrew C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter,
Cambridge, UK: Cambridge University Press, 1989.

14All estimation results reported here have been produced using TSP, version 4.5, as
documented in Bronwyn H. Hall and Clint Cummins, User’s Guide to Time Series Pro-
cessor, Version 4.5, Palo Alto, CA: TSP International, 1999.

15J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, London, UK: Chap-
man and Hall, 1964.
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variable’s long-run projection mean can be sampled to obtain the realized
value of the long-run projection mean for this Monte Carlo replication. This
straightforward generalization of the method used to generate a time series for
the input variable requires a specification of the estimated stochastic process
that permits use of different values for the long-run projection mean (or
ultimate value) in each Monte Carlo replication. The two examples illustrate
how the variances of the measurement and prediction errors can be estimated
and used in the stochastic projection.16

Example: Productivity Growth Rate

The productivity growth rate is an important economic input variable be-
cause it largely determines the rate of increase in real wages, which influences
the level of both OASDI benefits and taxes. In this first example, current
methods are used to estimate an ARIMA model of the productivity growth
rate, and this model is used to generate a stochastic projection in which only
the productivity growth rate fluctuates in value and all other input variables
assume their deterministic intermediate-cost values. Then the new methods
are applied to the productivity growth rate, stochastic projections are gen-
erated, and the degree of uncertainty in the trust fund actuarial balance is
compared between the stochastic projections.

Figure 1 shows how the annual productivity growth rate has varied around
the sample mean of 1.85 percent during the period from 1960 through 2000
with no apparent long-run trend.

A specification search among the class of ARIMA models finds that the
best model for the productivity growth rate is a constant plus white noise.
Because the sample mean has been subtracted from each annual observation,
the best ARIMA model is simply white noise, as shown in Equation 1 where
yt denotes the productivity growth rate in year t minus the sample mean.

yt = εt εt ∼ N(0, σ2
ε ). (1)

Using ordinary least squares, 1.19 is the estimated value of σε in Equation 1.
Using a structural time series model to represent the possibility of a time-

varying mean displacement and a long-run trend in the productivity growth

16All simulation results presented here have been produced using SSASIM (1/10/03 ver-
sion), as documented in Martin R. Holmer, Introductory Guide to SSASIM, Washington,
DC: Policy Simulation Group, January 2003.
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Figure 1: Productivity Growth Rate, 1960–2000, Measured Rela-
tive to Sample Mean. Data are from OACT web site.

rate produces the model specified in Equations 2–3, where γ denotes the
time-varying mean displacement and δ denotes the long-run trend.

yt = γt−1 + εt εt ∼ N(0, σ2
ε ) (2)

where

γt = λγt−1 + δ + νt νt ∼ N(0, πνσ
2
ε ). (3)

The structural time series model specified in Equations 2–3 can be repre-
sented in state space form with the measurement equation as follows:

yt =
[
1 0 0

]



yt

γt

δt


 (4)

and the transition equation for the state variable as follows:



yt

γt

δt


 =



0 1 0
0 λ 1
0 0 1







yt−1

γt−1

δt−1


 + ωt ωt ∼ N(0, σ2

ε Q) (5)
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where

Q =



1 0 0
0 πν 0
0 0 0


 . (6)

The hyperparameters (λ, σε, πν) of the state space form in Equations 4–6
and the initial value of the state variable are estimated using maximum like-
lihood methods applied to the Kalman filter.17 A likelihood ratio test shows
that the estimated trend is not significantly different from zero. Assuming
δ = 0, the estimated value (standard error) of the hyperparameters are as
follows: λ 0.875 (0.079), σε 1.034 (—), and πν 0.033 (0.051). The last two
estimates imply that 0.189 is the estimated value of σν . A likelihood ratio
test indicates that the null hypothesis of no time-varying mean displacement
— that is, λ = 0 and πν = 0 — is rejected at conventional significance levels
(p = 0.05).

The estimated value of the time-varying mean displacement γ over the
past forty years is shown in Figure 2. Its estimated movement, having a
positive value during the 1960s and early 1970s and a negative value from
the late 1970s through the late 1990s, is in accordance with the research
literature on the productivity growth rate.

The results of using both the estimated models to simulate one thousand
productivity growth rate time series are shown in Figure 3, which summa-
rizes the variability of the simulated time series in a manner similar to that
used by CBO.18 The ARIMA model generates a more disperse annual dis-
tribution of the productivity growth rate, but a less disperse distribution of
the cumulative average productivity growth rate.

These two sets of simulated time series for the productivity growth rate
are used in SSASIM to generate two distributions of the combined OASDI
trust fund actuarial balance. Each distribution consists of one thousand
values of the actuarial balance. All input variables other than the produc-
tivity growth rate are assumed to have the deterministic values used in the
intermediate-cost projection of the 2001 Trustees Report. Both sets of sim-
ulated time series are generated assuming a certain ultimate value (CUV) of

17For details see discussion of TSP’s KALMAN procedure on pages 128–131 of Bronwyn
H. Hall and Clint Cummins, Reference Manual for Time Series Processor, Version 4.5,
Palo Alto, CA: TSP International, 1999.

18Congressional Budget Office, “Uncertainty in Social Security’s Long-Term Finances:
A Stochastic Analysis,” A CBO Paper, December 2001, pages 44–54.
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Figure 2: Productivity Growth Rate, 1960–2000, Measured Rela-
tive to Sample Mean, and Estimated Time-Varying Mean Dis-
placement. Estimated mean displacement is shown as the dotted line.

5 15 25 35 45 55 65 75

Projection Year

-3

-2

-1

0

1

2

3

P
ro

du
ct

iv
ity

 G
ro

w
th

 R
at

e 
(in

 p
er

ce
nt

)

ARIMA: thin lines STRUC: thick lines

90% annual range: solid lines 90% average range: dashed lines

Figure 3: Range of Projected Productivity Growth Rates, Measured
Relative to Long-Run Projection Mean.

11



0 10 20 30 40 50 60 70 80 90 100

Percentile

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

eg
at

iv
e 

A
ct

ua
ria

l B
al

an
ce

 (
pe

rc
en

t o
f p

ay
ro

ll)

2001TR int-cost ultimate value
used as long-run projection mean

low

int

high

ARIMA+CUV

STRUC+CUV

STRUC+UUV

Figure 4: Negative OASDI Actuarial Balance Distribution for
Three Models of Projected Productivity Growth Rate.

1.5 percent for the productivity growth rate, which is the intermediate-cost
ultimate value in the 2001 Trustees Report. The two resulting distributions
of the actuarial balance are shown in Figure 4, where the actuarial balance
associated the low-cost, intermediate-cost, and high-cost values of the pro-
ductivity growth rate in the 2001 Trustees Report are shown as horizontal
lines for comparison. The actuarial balance distribution generated by the
structural time series model of the productivity growth rate is somewhat
more disperse than the distribution generated by the ARIMA model.

The third simulated distribution of the trust fund actuarial balance shown
as the solid line in Figure 4 is generated by combining the structural time
series model of the productivity growth rate with an uncertain ultimate value
(UUV) assumption.

Sometimes there are good reasons to believe that the long-run mean in
the future will differ from the long-run mean in the past. Discussions about
ultimate values most often take the form of establishing the historical mean
and then the reasons for a projection deviation from that historical mean.
Given an estimate of the historical mean and the projection deviation, the
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assumed ultimate value is calculated as follows:

u = h + d (7)

where the assumed ultimate value is denoted by u, the historical long-run
mean value by h, and the projection deviation by d. This procedure is
sensible, but ignores the uncertainty associated with both the estimate of
the historical mean and the estimate of the projection deviation. The long-
run historical mean is uncertain because it is estimated with limited sample
data and the projection deviation is uncertain because the extent to which
the future will differ from the past is not known with certainty. If it is
assumed that the measurement error associated with the historical mean,
which is distributed with a normal distribution whose standard deviation is
denoted by σh, is uncorrelated with the prediction error associated with the
projection deviation, which can be assumed to be represented by a normal
distribution whose standard deviation is denoted by σd, then the uncertainty
associated with the ultimate value can be expressed as follows:

σ2
u = σ2

h + σ2
d (8)

where σ2
u denotes the normal variance of the assumed ultimate value.

Applying Equation 8 to the productivity growth rate, the measurement
error σh is 0.186 percent using the 1960–2000 sample observations. The use of
a 1.50 percent ultimate value in the 2001 intermediate-cost projection implies
a projection deviation of –0.35 percent relative to the historical mean of 1.85
percent. If it is assumed that there is only a twenty percent chance that
the long-run mean in the future will equal or exceed the long-run historical
mean, then the prediction error σd is 0.416 percent. This is a conservative
estimate of the prediction error because it assumes that there is an eighty
percent chance that the long-run mean in the future will be less than the long-
run mean in the past. Under the plausible assumption of independence, the
variances of the two errors are added to produce an estimate of the variance
of the ultimate value. This implies a 0.455 percent standard deviation (σu)
for the productivity growth rate ultimate value, whose mean value is assumed
to be 1.50 percent. Notice that about 83 percent of the variance is associated
with the prediction error, which itself is probably being under estimated in
these calculations.

Using the structural time series model and the assumption that the ul-
timate value of the productivity growth rate is a normal distribution with

13



a mean of 1.50 percent and a standard deviation of 0.455 percent produces
the simulated distribution of the trust fund actuarial balance shown as the
solid line in Figure 4. This distribution is substantially more disperse than
the other two distributions which are both generated using the assumption
of a certain ultimate value. Combining the estimated structural time series
model with a conservative assumption about the size of the prediction er-
ror associated with the assumed ultimate value of the productivity growth
rate produces an actuarial balance distribution with about 30 percent of the
observations above the high-cost projection and about 25 percent below the
low-cost projection. In other words, more than half the actuarial balance dis-
tribution lies beyond the low-cost/high-cost range shown in the 2001 Trustees
report for the productivity growth rate.

The low-cost, intermediate-cost, and high-cost ultimate values for the
productivity growth rate were all increased by 0.10 percentage points in the
2002 Trustees Report, which offers this explanation for the change: “This
increase reflects ongoing assessment of historical data, including the period
of rapid productivity growth between 1995 and 2000.”19 The fact that a few
years of above average values for the productivity growth rate would lead to
a change in the ultimate value used as the mean in a 75-year projection sug-
gests a need to recognize the fact that the productivity growth rate exhibits
time-varying mean displacements. It also suggests that the prediction error
associated with the assumed ultimate value for the productivity growth rate
is substantial in the minds of the Trustees, perhaps much larger than the
prediction error assumed here.

Example: Total Fertility Rate

The total fertility rate is an important demographic input variable because
it influences the number of workers paying taxes several decades later and
influences the number of beneficiaries many decades later. In this second
example, current methods are used to estimate an ARIMA model of the
total fertility rate, and this model is used to generate a stochastic projection
in which only the total fertility rate fluctuates in value and all other input
variables assume their deterministic intermediate-cost values. Then the new
methods are applied to the total fertility rate, stochastic projections are

19The 2002 Annual Report of the Board of Trustees of the Federal Old-Age and Survivors
Insurance and Disability Insurance Trust Funds, page 85.
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generated, and the degree of uncertainty in the trust fund actuarial balance
is compared between the stochastic projections.

Figure 5 shows how the total fertility rate has varied around the sample
mean of 2.55 children per woman during the period from 1917 through 1999.
Clearly there have been substantial swings up and down in fertility: a sharp
fall from the late 1910s through the 1930s, the high rates associated with the
baby boom during the late 1940s through the early 1960s, and another major
decline during the late 1960s and early 1970s. In addition to substantiating
these major fluctuations, the figure suggests the possibility that there has
been a long-run trend towards lower total fertility rates.

The natural logarithm of the total fertility rate is shown for the same
years in Figure 6. The log rate is used here for two reasons. First, the rate
cannot be negative and a log transformation ensures that positive rates are
always produced in the simulations. Second, because the possibility of a
long-run trend in the total fertility rate is explored, the log transformation
implies that a constant decline corresponds to a constant percentage decline
in the untransformed rate, which is analogous to the OACT representation of
the mortality rate input variable. Comparing Figure 5 and Figure 6 reveals
that the log transformation introduces very little distortion into the time
series, unlike a log-odds transformation where the rate is constrained to be
between zero and four, which has been used by others.20

A specification search among the class of ARIMA models finds that the
best model for log total fertility rate is an ARIMA(4,0,1) model, which is the
specification used in earlier versions of S4 and in CBOLT. Because the sample
mean has been subtracted from each annual observation, the ARIMA(4,0,1)
model shown in Equation 9 has no constant term.

yt = φ1yt−1 + φ2yt−2 + φ3yt−3 +

φ4yt−4 + εt − θ1εt−1 εt ∼ N(0, σ2
ε ) (9)

where yt denotes the log total fertility rate in year t minus the sample mean.
The same maximum-likelihood/Kalman-filter methods used to estimate

the structural time series models are used to estimate the ARIMA(4,0,1)

20For CBO’s use of the log-odds transformation, see Congressional Budget Office, “Un-
certainty in Social Security’s Long-Term Finances: A Stochastic Analysis,” A CBO Paper,
December 2001, page 73. For the reasons Lee has abandoned this transformation, see foot-
note 9 in Ronald D. Lee and Shripad Tuljapurkar, “Population Forecasting for Fiscal Plan-
ning: Issues and Innovations” in Alan J. Auerbach and Ronald D. Lee, eds., Demographic
Change and Fiscal Policy, Cambridge, UK: Cambridge University Press, 2001.
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Figure 5: Level of Total Fertility Rate, 1917–1999, Measured Rel-
ative to Sample Mean. Data are from an unpublished OACT fertility file
provided complements of CBO.
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Figure 6: Level of Log Total Fertility Rate, 1917–1999, Measured
Relative to Sample Mean.
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model. These methods are used to facilitate statistical comparisons with the
structural time series model and they produce estimated coefficients that are
statistically indistinguishable from the those produced using Box-Jenkins
estimation methods. The estimated values (standard errors) of the coeffi-
cients of the ARIMA(4,0,1) model of log total fertility rate are as follows: φ1

1.971 (0.139), φ2 –1.480 (0.246), φ3 0.903 (0.207), φ4 –0.416 (0.095), θ1 0.615
(0.147), and σε 0.033 (—). The log likelihood is 164.461.

Using a structural time series model to represent the possibility of a time-
varying mean displacement (whose level and slope are both subject to random
shocks) and a long-run trend in the total fertility rate produces the model
specified in Equations 10–12, where µ denotes the level of the time-varying
mean displacement, γ represents the slope of the displacement, and δ denotes
the long-run trend in the log total fertility rate. Autoregressive terms with
one-year and two-year lags are also included in the model to test the hypoth-
esis that short-run dynamics of fertility differ qualitatively from long-run
movements in fertility, as suggested by earlier work.21

yt = φ1yt−1 + φ2yt−2 + µt−1 + εt εt ∼ N(0, σ2
ε ) (10)

where

µt = ρµt−1 + γt−1 + ηt ηt ∼ N(0, πησ
2
ε ) (11)

and where

γt = λγt−1 + δ + νt νt ∼ N(0, πνσ
2
ε ). (12)

The structural time series model specified in Equations 10–12 can be repre-
sented in state space form with the measurement equation as follows:

yt =
[
1 0 0 0 0

]




yt

yt−1

µt

γt

δt




(13)

21Shripad Tuljapurkar and Carl Boe, “Validation, Bayesian Methods, and Information
in Stochastic Forecasts,” Mountain View Research working paper, 1997.
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and the transition equation for the state variable as follows:



yt

yt−1

µt

γt

δt



=




φ1 φ2 1 0 0
1 0 0 0 0
0 0 ρ 1 0
0 0 0 λ 1
0 0 0 0 1







yt−1

yt−2

µt−1

γt−1

δt−1



+ ωt (14)

where

ωt ∼ N(0, σ2
ε Q) (15)

and

Q =




1 0 0 0 0
0 0 0 0 0
0 0 πη 0 0
0 0 0 πν 0
0 0 0 0 0




. (16)

The hyperparameters (φ1, φ2, ρ, λ, δ, σε, πη, πν) of the state space form
in Equations 13–16 and the initial value of the state variable are estimated
using maximum likelihood methods applied to the Kalman filter. A likelihood
ratio test shows that the variance of the shock to the displacement level is
not significantly different from zero. Assuming πη = 0, the estimated value
(standard error) of the hyperparameters are as follows: φ1 –0.148 (0.078), φ2

–0.418 (0.049), ρ 0.900 (0.099), λ 0.780 (0.146), δ –0.0035 (0.0038), σε 0.0001
(—), and πν 110398 (109767). The last two estimates imply that 0.0343 is the
estimated value of σν . The log likelihood is 173.715. A likelihood ratio test
indicates that the null hypothesis of no long-term trend in the total fertility
rate — that is, δ = 0 — is rejected at the p = 0.10 significance level, but not
at the p = 0.05 significance level (χ2(1) = 3.34). The structural time series
model clearly fits the data better than the ARIMA(4,0,1) model even when
adjusting for the different number of parameters estimated in the two models:
the Bayesian information criterion (BIC) for the structural model is much
smaller (–151.621) than the BIC for the ARIMA(4,0,1) model (–142.367).

The negative φ coefficients in the structural time series model of the total
fertility rate suggest that the short-run dynamics of fertility are influenced
by the fact that women who have given birth within the past year are less
likely to conceive than women without young babies. The structural model’s
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Figure 7: Range of Projected Log Total Fertility Rates, Measured
Relative to Long-Run Projection Mean.

explicit specification of a time-varying mean displacement appears to be the
reason why these two autoregressive parameters have significantly different
values than they do in the ARIMA(4,0,1) model.

The results of using both the estimated ARIMA model and the esti-
mated structural model (with the trend parameter δ set to zero) to simulate
one thousand total fertility rate time series are shown in Figure 7. The
ARIMA model generates distributions of the annual total fertility rate that
have roughly the same dispersion as the annual distributions generated by
the structural model, but the ARIMA model generates a cumulative average
total fertility rate distribution that is much less disperse than the cumulative
average distribution generated by the structural model of fertility.

These two sets of simulated time series for the total fertility rate are
used in SSASIM to generate two distributions of the combined OASDI trust
fund actuarial balance. Each distribution consists of one thousand values
of the actuarial balance. All input variables other than the total fertility
rate are assumed to have the deterministic values used in the intermediate-
cost projection of the 2001 Trustees Report. Both sets of simulated time
series are generated assuming a certain ultimate value of 1.95 children for the
total fertility rate, which is the intermediate-cost ultimate value in the 2001
and 2002 Trustees Reports. The two resulting distributions of the actuarial
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Figure 8: Negative OASDI Actuarial Balance Distribution for
Three Models of Projected Total Fertility Rate.

balance are shown in Figure 8, where the actuarial balance associated the
low-cost, intermediate-cost, and high-cost values of the total fertility rate
in the 2001 Trustees Report are shown as horizontal lines for comparison.
The actuarial balance distribution generated by the structural model of the
total fertility rate (with its trend coefficient δ set to zero) is noticeably more
disperse than the distribution generated by the ARIMA model.

The third simulated distribution of the trust fund actuarial balance shown
as the solid line in Figure 8 is generated by combining the structural time
series model of the total fertility rate (assuming no long-run trend) with an
uncertain ultimate value assumption.

Calculating the standard error of the ultimate value for the total fertility
rate involves several steps.

The results of using the estimated structural model (including the neg-
ative estimated trend parameter δ) to simulate one thousand total fertility
rate time series indicates that the mean value of the cumulative 75-year av-
erage total fertility rate is about 1.79 children, which is about eight percent
below the 1.95 ultimate value assumed in recent Trustees Reports. Assum-
ing that the historical mean is interpreted as the long-run mean produced

20



by the continuation of the historical trend, applying Equation 7 produces
log(1.95) = log(1.79) + 0.0856. In other words, the intermediate-cost ulti-
mate value for total fertility rate assumes a slowdown in the long run histor-
ical trend towards lower fertility rates. This may turn out to be an accurate
prediction in the distant future, but the uncertainty of this projection must
be recognized in the present.

The measurement error associated with the log(1.79) term can be esti-

mated as
√

σ2/T where σ2 denotes the variance of estimated residuals in an
ordinary least squares regression of the log total fertility rate on a constant
term and a time trend using T = 83 annual observations. These calculations
produce an estimate of 0.021 for the measurement error, the σh in Equation 8.

The prediction error associated with the 0.0856 projection deviation, the
σd in Equation 8, is estimated to be 0.102 using the conservative assumption
that there is only a twenty percent chance that the long-run mean in the
future will be less than the mean associated with a continuation of the his-
torical fertility trend. This is a conservative estimate of the prediction error
because it assumes that there is an eighty percent chance that the long-run
mean in the future will be more than the long-run mean implied by projecting
the historical fertility trend into the future.

Under the plausible assumption of independence, the variances of the
measurement and prediction errors are added to produce an estimate of the
variance of the ultimate value. This implies a 0.104 standard error (σu) for
the total fertility rate ultimate value, whose mean value is assumed to be
0.668 (= log(1.95)). Notice that 96 percent of the variance is associated with
the prediction error, which itself is probably being under estimated in these
calculations.

Using the structural time series model (with its trend parameter set to
zero) and the assumption that the ultimate value of the log total fertility
rate is a normal distribution with a mean of 0.668 and a standard devia-
tion of 0.104 produces the simulated distribution of the trust fund actuarial
balance shown as the solid line in Figure 8. This distribution is somewhat
more disperse than the other two distributions which are both generated
using the assumption of a certain ultimate value. Combining the estimated
structural time series model (with its trend parameter set to zero) with a con-
servative assumption about the size of the prediction error associated with
the assumed ultimate value of the total fertility rate, produces an actuar-
ial balance distribution with about 30 percent of the observations above the
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high-cost projection and about 25 percent below the low-cost projection. In
other words, more than half the actuarial balance distribution lies beyond
the low-cost/high-cost range shown in the 2001 Trustees report for the total
fertility rate.

It could be argued that the baby boom was a unique historical experience
that will never be repeated. This is a debatable demographic assumption,
analogous to an economic assumption that no major wars or depressions will
occur in the future. Excluding historical data for such “unique” demographic
and economic experiences from the samples used to estimate time series mod-
els for the key input variables is likely to reduce substantially the projected
uncertainty in trust fund finances. To get an idea of the magnitude of the
reduction, the above analysis of the total fertility rate has been redone based
on a sample that excludes the twenty baby-boom years from 1946 to 1965.
The post-1965 observations are placed immediately following the 1945 obser-
vation in this edited sample. The coefficients of the ARIMA and structural
models, and the degree of uncertainty in the assumed ultimate value, are
estimated using the same methods with this edited sample. The resulting
simulated distributions of the trust fund actuarial balance are shown in Fig-
ure 9, which has exactly the same scale as Figure 8 where the distributions
resulting from use of the complete 1917–1999 sample are shown. While the
distributions produced by the edited sample clearly show less dispersion than
those produced by the complete sample, about 40 percent of the distribution
generated by the structural model and uncertain ultimate value falls outside
the low-cost/high-cost range.

An alternative approach to editing the sample would be to estimate the
time series models using only post-1965 fertility data. This more drastic
approach ignores not only the baby boom experience, but also major fluc-
tuations in the total fertility rate that occurred before 1946. The rationale
for such an approach is unclear. What is clear is that such a severe sample-
editing approach would produce estimated time series models that generate
total fertility rate distributions that are much less disperse than the ones
shown here. Whether or not the simulated distribution of the trust fund
actuarial balance would be much less disperse than the ones shown here de-
pends on whether or not uncertainty in the ultimate value was recognized
and estimated to be larger because of the reduced reliability of the severely
edited sample.
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Figure 9: Negative OASDI Actuarial Balance Distribution for
Three Models of Projected Total Fertility Rate Estimated Exclud-
ing Baby-Boom Years in Sample. The excluded years are 1946–1965.

Projections with Examples Combined

As a final exercise, the time series model for productivity growth rate and the
time series model for total fertility rate (estimated with the complete sam-
ple) are used together to produce a stochastic projection of the trust fund
actuarial balance. All other input variables are assumed to have the deter-
ministic values used in the intermediate-cost projection of the 2001 Trustees
Report. As in the two examples, three distributions of the actuarial balance
are compared in Figure 10, which has exactly the same scale as other figures
that show actuarial balance distributions. The actuarial balance generated
using the low-cost, intermediate-cost, and high-cost ultimate values of the
productivity growth rate and total fertility rate in the 2001 Trustees Re-
port are shown as horizontal lines for comparison. These horizontal lines are
more widely spaced than in the figures above because the low-cost (high-
cost) actuarial balance assumes, as do the Trustees Reports, that both input
variables simultaneously take on their low-cost (high-cost) ultimate value.
This extreme assumption is equivalent to assuming that the ultimate values
of the productivity growth rate and total fertility rate are perfectly positively
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Figure 10: Negative OASDI Actuarial Balance Distribution for
Three Combined Models of Projected Productivity Growth Rate
and Projected Total Fertility Rate. Total fertility rate models are all
estimated with the complete 1917–1999 sample.

correlated (that is, their correlation coefficient equals plus one).
One actuarial balance distribution is produced using the ARIMA models

for productivity and fertility combined with the assumption of certain ulti-
mate values for the productivity growth rate and total fertility rate. This
distribution has a standard deviation of 0.43 percent with only about 12
percent of its observations located beyond the low-cost/high-cost range. A
second actuarial balance distribution is generated using the structural mod-
els for productivity and fertility combined with the assumption of certain
ultimate values for the productivity growth rate and total fertility rate. This
distribution has a standard deviation of 0.52 percent with about 22 percent
of its observations located beyond the low-cost/high-cost range. The third
actuarial balance distribution is produced by combining the structural mod-
els for productivity and fertility with the assumption of uncertain ultimate
values for the productivity growth rate and total fertility rate. This distri-
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bution has a standard deviation of 0.74 percent with about 40 percent of
its observations located beyond the low-cost/high-cost range. The difference
between 40 percent beyond the low-cost/high-cost range, when recognizing
both time-varying mean displacements and uncertain ultimate values, and
12 percent beyond the low-cost/high-cost range, when using current methods
that ignore both these issues, illustrates how much current methods under
estimate the uncertainty in the trust fund actuarial balance.

Conclusion and Future Work

After reviewing the evolution of methods currently used to produce stochastic
projections of the combined OASDI trust fund, two problems with these
methods are identified. First, the ARIMA models currently used to estimate
stochastic processes for the key demographic and economic input variables do
not permit time-varying mean displacements. And second, the Monte Carlo
simulation methods currently used to generate a probability distribution for
the trust fund actuarial balance (or other financial statistic) do not recognize
uncertainty in the ultimate values (or long-run projection means) of the key
input variables. Both of these problems with current methods cause the
dispersion of the actuarial balance distribution to be under estimated.

After describing a statistical estimation method and a stochastic simula-
tion method that have the potential to solve these problems, the new meth-
ods are tested with one economic input variable, the productivity growth
rate, and one demographic input variable, the total fertility rate. These two
examples indicate that the new methods can be implemented without diffi-
culty, that the use of structural time series models permits the representation
of time-varying mean displacements that lead to better fitting models, and
that a straightforward application of Monte Carlo methods can be used to
simulate ultimate-value uncertainty arising primarily from prediction errors.

Comparing the actuarial balance distributions generated using current
methods with distributions generated using these new methods indicates, at
least in the two examples considered here, that current methods under es-
timate the dispersion in the actuarial balance distribution by a substantial
amount. These preliminary results suggest a need to apply these new meth-
ods to all the key variables used as model inputs. Only a comprehensive
implementation of the new methods can provide an accurate indication of
how much uncertainty in the trust fund actuarial balance is being missed by
the current methods.
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